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Abstract—Large-scale systems typically mount many differ-
ent file systems with distinct performance characteristics and
capacity. Applications must efficiently use this storage in order
to realize their full performance potential. Users must take into
account potential file replication throughout the storage hierarchy
as well as contention in lower levels of the I/O system, and
must consider communicating the results of file I/O between
application processes to reduce file system accesses. Addressing
these issues and optimizing file accesses requires detailed run-
time knowledge of file system performance characteristics and
the location(s) of files on them.

In this paper, we propose Fast Global File Status (FGFS), a
scalable mechanism to retrieve file information, such as its degree
of distribution or replication and consistency. We use a novel
node-local technique that turns expensive, non-scalable file system
calls into simple string comparison operations. FGFS raises the
namespace of a locally-defined file path to a global namespace
with little or no file system calls to obtain global file properties
efficiently. Our evaluation on a large multi-physics application
shows that most FGFS file status queries on its executable and
848 shared library files complete in 272 milliseconds or faster at
32,768 MPI processes. Even the most expensive operation, which
checks global file consistency, completes in under 7 seconds at
this scale, an improvement of several orders of magnitude over
the traditional checksum technique.

I. INTRODUCTION

Large-scale system sizes continue to grow exponentially [1].
Systems with ten thousand or more compute cores are common
and LLNL’s recently delivered Sequoia system has over a
million cores [2]. This exponential growth in concurrency
makes contention within the storage hierarchy common and
efficient file access a challenge.

Avoiding contention requires an understanding of the per-
formance and scalability of the entire storage hierarchy. Any
software running on large-scale systems, including scientific
applications, parallel libraries and tools, must determine dy-
namically how to adjust their strategies to improve perfor-
mance. However, determining the properties of the storage
hierarchy and its properties for all mounted file systems is
nontrivial due to the increasing complexity of file system
hierarchies. Further, existing parallel I/O software [3], [4], [5],
[6] focuses on the I/O patterns for large data set accesses,

and does not suit other I/O access patterns, such as uncoor-
dinated, simultaneous accesses to small files—e.g., launching
an executable that depends on many shared libraries triggers
vast numbers of simultaneous accesses to the same library
files when each process in the application loads the library
dependencies. Further, in parallel environments, a file can
reside in one or more local or remote file systems. Thus,
different physical file systems may serve files with an identical
file path to different processes of the same program.

In order to cope with these complexities, high performance
computing (HPC) software requires a richer set of abstractions
and scalable mechanisms by which to retrieve the performance
properties of a file. To close this gap and enable efficient
run time access to such information, we propose Fast Global
File Status (FGFS), a scalable mechanism to retrieve file
information including the degree of replication or distribution
and consistency across local or remote file systems. FGFS
builds on a simple node-local technique that raises the local
namespace of a file to a global namespace using a memory-
resident mount points table. FGFS extracts the global proper-
ties of a file path by comparing and grouping the global names
seen by various processes.

FGFS status queries retrieve global information on both
individual files and entire file systems. FGFS supports syn-
chronous and asynchronous file status queries; File systems
status queries serve as an inverse classifier that selects those
mounted file systems that best match a given set of global
properties required by an I/O operation. We design the FGFS
Application Programming Interface (API) and its implemen-
tation to support the file access and information needs of a
wide range of HPC programs, libraries and tools.

This paper makes the following contributions:
• A novel node-local technique to raise locally-defined file

names to a global namespace;
• Scalable parallel algorithms based on string comparisons

to compute global file properties;
• APIs and their implementations to provide global file

information to existing HPC software at run time.
Our performance evaluation on a large multi-physics pro-

duction application shows that most FGFS file status queries



on its executable and its 848 shared libraries completes in
272 milliseconds or less at 32,768 MPI processes. Even the
most expensive query that checks the global consistency of
these files, takes under 7 seconds at this scale. Compared to
the traditional technique in which remote daemons compute
and compare checksums, FGFS provides several orders of
magnitude improvements.

Additionally, we apply our techniques to three case studies
and show how FGFS enables a wide range of HPC software
to improve the scalability of its file I/O patterns. The first
case study applies FGFS to the Stack Trace Analysis Tool
(STAT) [7] and shows that FGFS aids this lightweight debug-
ging tool in choosing between direct file I/O and file broad-
casting. This capability results in a 52x speedup at 16,384 MPI
processes. Second, we demonstrate that an efficient FGFS file
status query is a crucial element for a highly scalable dynamic
loading technique called Scalable Parallel Input Network for
Dynamic Loading Environment (SPINDLE). The final study
shows that FGFS file system status queries help the Scalable
Checkpoint/Restart (SCR) library [8] to eliminate the need for
arduous manual configuration efforts in discovering the best
file system on which to store its multilevel checkpoints.

The remainder of this paper is organized as follows. Sec-
tion II motivates our work by presenting two file I/O patterns
that exposed scalability issues. Section III describes HPC file
distribution models. In Section IV, we present the overview
of our approach and detail the design and implementation of
FGFS. Section V presents our performance results and case
studies.

II. MOTIVATING EXAMPLES

While systems sizes and the associated concurrency used
within applications is growing at an exponential rate, the file
I/O subsystems are not able to keep up with this growth. As a
direct consequence, file system accesses are turning into one
of the most critical bottleneck as we continue to scale HPC
systems. In such an environment, uncoordinated file access
patterns that do not consider the file system performance char-
acteristics often have an effect similar to site-wide denial-of-
service attacks on the shared file systems. Such patterns have
been identified as one of major challenges for extreme scale
computing [9], yet are becoming increasingly commonplace,
impacting the entire workloads of HPC centers.

A. Application Start-up Causes an I/O Storm at Scale

Application start-up of KULL [10], one of LLNL’s large
multi-physics applications, exposed serious scaling challenges.
When it was first run at large scales on DAWN, an IBM
Blue Gene/P machine installed at LLNL, application start-
up appeared to scale very poorly. For example, at 2,048 MPI
processes, loading the executable with its dependent shared
libraries took an hour, just to get to the main function. At
16,384 processes, it jumped to over ten hours.

Our investigation revealed that the primary cause of the ten
hour executable load time was that the 16,384 instances of
the dynamic loader (ld.so) were making a combined 300

Fig. 1: Checksum-based consistency tests on KULL

million unnecessary open calls to the NFS server (where the
application’s executable and hundreds of shared libraries are
staged) in order to search for the requested shared libraries.
Since the POSIX standard prohibits caching of open calls
to non-existent files, every call must be passed through to the
NFS server, and since the compiler placed twenty directories in
the default shared library search path, the dynamic loader was
searching each of those directories for each of the hundreds
of application shared libraries before searching the appropriate
user-specified directories. Further, staging the application files
into a parallel file system such as Lustre [11] did not improve
the performance much, as a metadata operation storm can
thrash the parallel file system, too. Simultaneous accesses
to the many, typically small library files overwhelmed the
file system and significantly disrupted the entire computing
facility.

To mitigate this problem, the application team staged the
shared libraries in a way that minimized the number of
unnecessary open system calls. As a result of these tuning
efforts, the load time was reduced down to 18.6 minutes at
16,384 processes and 37.1 minutes at 32,768 processes. While
a major improvement, it was a point solution for this particular
setup and, yet, the overhead remained to be too high for
a scale representing only a small fraction of today’s largest
machines. Further, the start-up continues to disrupt the shared
file systems. Overall, it became evident that we require a more
systematic and generic solution that can effectively manage an
uncoordinated file I/O storm exhibited by the dynamic loaders.

B. Checksumming Poses Challenges to Run-time Tools

Accessing application executables and their shared libraries
also poses challenges to many run time tools. Debuggers and
dynamic instrumentation tools must read the binaries to access
their symbols and model the address space of their target appli-
cation processes. For example, to compute the absolute address
of a function found in a shared library, a debugger must fetch
the relative address of the function symbol from the library
file and add it to the library’s load address within the process’
address space. Because target processes are distributed and
can potentially load different shared library versions through



the same file path1, it is critical for these tools to construct
an address-space model that is consistent with each individual
target process. To account for this, tools like DDT [12] and
TotalView [13] have remote daemons either testing global
consistency by taking and comparing the checksums of all
involved binaries or by building the model for each target
process. Both techniques require daemons to perform extensive
file I/O and hence can cause severe performance problems.

Figure 1 illustrates this cost by showing the overhead of
the checksum-based scheme on KULL. In this test, daemons
take the MD5 checksum of the executable and 848 dependent
shared library files of a production KULL installation on a
Linux cluster. The file I/O required to compute the checksums
is being serialized at the NFS server where the executable
along with a majority of its dependent shared libraries are
staged. Even at a small scale, like 256 daemons, this scheme
has unacceptable overhead for use by an interactive tool.

Similarly to Section II-A, our experiments revealed that
staging these application files on a parallel file system did not
improve scalability. A typical shared library is small and thus
it is divided into only a limited number of smaller chunks
to be stored across only few I/O servers of the parallel file
system. As a result, highly concurrent file accesses create
a contention on the small number of I/O servers, failing to
exploit the parallelism and bandwidth that the parallel file
system promises. Improving the scalability and disruption
therefore requires an efficient global file information retrieval
technique with little or no file I/O.

C. Enabling Scalable Solutions

Knowing the global information of a file or a mounted file
system allows users to avoid non-scalable read and write I/O
patterns. For read accesses, the daemons or loaders in the
previous cases can use it to predict contention before accessing
a file. If a bottleneck is predicted, the program can then choose
to use an alternative file-access technique in which a limited
number of representatives are designated to perform the I/O on
behalf of the others. For example, a coordinator approach can
be used to address the file I/O storm that led to unacceptable
start-up overhead for KULL. When a file is found to reside in
a non-scalable file system and when a large number of loaders
will access it, then it can be read by a few coordinators that
then broadcast its contents to the rest of the loaders. However,
to enable this scheme, all loaders must be able to obtain the
global information of any file that they load. Further, they must
get to this information both efficiently and scalably in order
not to create a bottleneck by doing so.

Similarly, write patterns can also benefit from global infor-
mation of the file systems mounted on a machine. For instance,
a distributed HPC application often needs to determine the best
storage locations across all mounted file systems with respect
to their available aggregate space, distribution, performance,

1This behavior is typically not desirable and systems are typically config-
ured to be consistent. Tools, in particular debuggers, however, must be able
to tolerate inconsistencies since they may used to exactly investigate failure
scenarios caused by such inconsistencies.
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Fig. 2: Issues arising with file distribution models

and scalability. To make a decision, application processes must
be able to construct a query with criteria on the desired global
properties of a file system and scalably retrieve the result
containing the best-suited locations.

The FGFS service, introduced in this work, provides the
necessary information to enable such optimizations through a
reusable, general-purpose query layer. It thereby supports the
necessary I/O trade-off decisions for a wide range of HPC
software including parallel tools, dynamic loaders, scripting
language interpreters, parallel libraries, and further scientific
applications themselves.

III. FILE DISTRIBUTION MODELS IN HPC

Before going into the details of FGFS, we discuss the overall
trade-off space of parallel I/O for HPC systems. A file seen by
distributed application processes can be mapped to different
physical file distribution models. In one case, a single file
system can uniquely serve it to all processes requesting it.
On the other extreme, a node-local file system, such as a
RAM disk, a solid-state drive, or a hard drive, can collectively
serve it to all of the processes in a fully distributed2 manner.
There also exist hybrid models where multiple file servers
collectively serve the file, but each server delivers it to only a
subset of the nodes.

Figure 2 depicts the file distribution continuum and contrasts
issues that arise at either end of the continuum: with the
uniquely-served model, the single file system can become a
bottleneck for performance and scalability, as the number of
processes accessing its storage increases; while with the fully-
distributed model, scalability is less of a problem as all file
I/O requests are locally satisfied. However, as a drawback,
it becomes impossible for a process to write a file to share
with other processes. In addition, even when a file provides
identical information to all processes, one must replicate the
file across all node-local disks and ensure that copies are
consistent. Hybrid models suffer these same issues.

Parallel file systems, such as Lustre [11] or GPFS [14], aim
to provide the semantics of the uniquely-served model while
leveraging storage distribution under the hood, attempting to
combine the advantages of both worlds. On a parallel file

2In many cases, a file is simply distributed across all nodes to be replicated.
Thus, the set of distributed cases is a superset of the set of replicated cases.
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system, all processes see a file as if it is uniquely served, but it
is physically broken down into smaller pieces and stored across
multiple I/O servers. This model works well when processes
concurrently access different parts of a file—a common access
pattern for HPC applications working on a single large-scale
data set—but it is ill-suited for concurrent I/O access with
no such parallelism: i.e., concurrent reading of an executable,
shared libraries, an input deck, or script files. In addition, this
model does not provide optimal performance when a file does
not need to have global visibility, e.g., the file contains some
intermediate state shared by only a subset of processes. On
the other hand, hierarchical hybrid approaches pursue building
a file system or a library that combines node-local storage,
as a high-bandwidth, low-latency cache, with a single remote
server, as permanent capacity storage, in an attempt to bring
best from both models [15], [8], [16], [17].

Unlike the parallel file system or hybrid approach, FGFS
does hide the storage distribution to address the common
issues associated with the distribution of a file, but rather
exposes the distributed information to a program to assist it
in making its own I/O trade-off decisions at scale. Thus, we
view FGFS as a complementary approach to existing parallel
or hybrid file system approaches.

IV. APPROACH

The core building block of FGFS is a node-local technique
that raises local file identifiers into a global namespace. The
global namespace then enables fast comparisons of file prop-
erties across distributed components with little or no access
requirement on the underlying file systems. Specifically, our
name resolution engine turns a local file path into a Uniform
Resource Identifier (URI), a globally unique identifier of the
file. This resolution process, however, is a purely local memory
operation, as our technique builds an URI through a memory-
resident table of file system mount points. This technique does
not use off-node communication and thus does not impact
scalability.

Figure 3 shows the high-level view of our solution, which
spans several facets of I/O challenges. The FGFS layer itself
is a scalable query layer within our overall I/O architecture
responsible for the classification of files or file systems based
on our file distribution models in Section III. FGFS provides
the global information through easy-to-use, interoperable in-
terfaces and implementations. It is also designed to assist the
HPC software either directly or through the global coordinator
layer that is responsible for orchestrating independent file I/O

string & resolvePth(const char *pth) {
string uriStr;
FileUriInfo uriInfo;

MountPointInfo mpInfo(true);
mpInfo.getFileUriInfo(pth, uriInfo);
uriInfo.getUri(uriStr);

return uriStr;
}

void manageConfigs() {
char *pth1="/etc/tool/conf";
char *pth2="/usr/etc/tool/conf";
char *pth3="/home/joe/.tool/conf";
char *pth4="/lscracta/j_cwd/conf";

string gid1 = resolvePth(pth1);
string gid2 = resolvePth(pth2);
string gid3 = resolvePth(pth3);
string gid4 = resolvePth(pth4);
...

}

Fig. 4: Code snippet that uses Mount Point Attributes

accesses. In the following, we describe the core components,
techniques, and APIs of the FGFS package.

A. Mount Point Attributes

The main abstractions that enables raising the
namespace of local file names are packaged up into the
MountPointAttributes module. Figure 4 shows
an example that uses the high-level API exposed by
this module. The MountPointInfo class used in the
resolvePth function is the main data type that parses
out a mount point table and aids in resolving the file
name with its getFileUriInfo method. For example,
on a node named node1, a node-local path pth1 would
be resolved into file://node1/etc/tool/conf,
while remote files with paths pth2, pth3 and
pth4 would be resolved into something like
nfs://s1-nfs.llnl.gov:/e/usr/etc/tool/conf,
nfs://dip-nfs.llnl.gov:/v/joe/.tool/conf,
and lustre://172.16.60.200:/tmp/j_cwd/conf,
respectively. On another node named node2, pth1 would
be turned into file://node2/etc/tool/conf,
while pth2 can be turned into
nfs://s2-nfs.llnl.gov:/e/usr/etc/tool/conf,
if served from a different NFS server.

We have ported this scheme to many file systems including
local systems such as EXT 2, 3, and 4, various ramdisk-like
file systems (i.e., ramdisk, tmpfs, and rootfs), remote
file systems like NFS 3 and 4, CIFS, SMBFS, Lustre [11],
GPFS [14] and PANFS [18], and hybrid systems such as
union file systems. It is generally straightforward to port the



URI-based name resolution scheme to additional file systems;
however, some modern HPC file systems impose a slightly
higher complexity on this scheme. In the case of parallel file
systems such as Lustre and GPFS, which split a file into
multiple blocks and store them across multiple I/O servers,
care is needed to build a globally unique handle that represents
a file as a coherent logical object. Thus, we use the IP address
of a mounted Lustre file system’s metadata server, and the
local device file name for a mounted GPFS. Either is globally
unique for a given file, and can also be locally extracted via
a mount point table.

B. Global File Status Queries

The global namespace provided by the
MountPointAttributes module forms a reference
space where local parallel name comparisons can compute
common global properties. The global information must
capture properties like the number of different sources that
serve the file to all participating processes as well as the
process count and the representative process of each source.
FGFS provides low-level primitives on these properties.
For example, the FgfsParDesc parallel descriptor returns
various grouping information such as the number of unique
groups and the size and the representative process of the
group to which the caller belongs.

FGFS also composes these primitives in a way to capture
the main issues that emerge according to our file distribution
models described in Section III and exposes this information
through a high-level query API. Specifically, the API class,
GlobalFileStatusAPI, defines five virtual query meth-
ods:
• isFullyDistributed
• isWellDistributed
• isPoorlyDistributed
• isUnique
• isConsistent

Taking the local path of a file as the input, the
isWellDistributed and isPoorlyDistributed
queries test whether the file is served by a number of
remote file servers that is higher or lower than a configurable
threshold, respectively. Further, the isFullyDistributed
query determines whether the file is served locally, a special
case of being well-distributed, while the isUnique query
tests whether it is served by a single remote server, a special
case of being poorly-distributed. Finally, isConsistent,
which is implied by isUnique evaluates whether the file’s
content is consistent across all application processes.

C. Support for Synchronous and Asynchronous I/O Patterns

The FGFS queries are designed to support two distinct
classes of file I/O exhibited by distributed HPC programs.
The first class is synchronous I/O: all processes that make
lock-step progress synchronously are also synchronized in
their I/O requests. In this case, the processes can call a syn-
chronous FGFS query collectively and act upon the resulting
global information. MPI-based bulk-synchronous applications

would commonly use this type of queries. The second class
is asynchronous, independent I/O: a process independently
performs a UNIX file I/O without coordinating it with other
processes of the same program. In this case, the process can
call an asynchronous FGFS query without having to require
other processes to call the same query. Sequential processing
elements commonly used in HPC programs, such as dynamic
loaders, script languages and run-time libraries can exhibit
these I/O patterns. While independent, this I/O class can easily
result in a large amount of file system requests in very short
bursts at scale. Asynchronous FGFS queries are designed to
allow such patterns to avoid thrashing the file system.
SyncGlobalFileStatus is the main file status query

abstraction for synchronous I/O, which overrides all of the
high-level methods that GlobalFileStatusAPI defines.
Each overridden method requires all processes to partici-
pate. Upon a method being entered by all of the processes,
SyncGlobalFileStatus extracts the global information
of a file path on the fly. In contrast, for the asynchronous,
independent file I/O, FGFS must build prior knowledge about
the global information of all mounted file systems. Specif-
ically, during initialization, AsyncGlobalFileStatus
synchronously classifies all of the mount points and stores
the global information into a map. It overrides all but the
isConsistent method that GlobalFileStatusAPI
defines. Each method does not require all processes to par-
ticipate in the query—i.e., a single process can independently
make a query. AsyncGlobalFileStatus simply uses
the map to retrieve the global properties of a mounted file
system where the file resides, which is merely a local memory
operation.

If a program performs a large number of FGFS queries dur-
ing its execution, the asynchronous query can perform better as
the overhead of building the initial map is amortized over time.
Typically, HPC systems contain only few tens of mount points.
The major drawback of the asynchronous query is that it is not
simple to implement the isConsistent semantics. All files
that reside under an identical mount point inherit all global
properties of the mount point root except consistency: the con-
sistency of files varies at the individual file level. For example,
given a mount point /usr/apps, a file /usr/apps/foo
may be perfectly replicated across all file servers that service it,
while a different file /usr/apps/bar may be inconsistent.
A program can currently use the isUnique query to test
consistency as a special case.

D. Scalable Extraction Algorithm of Global File Properties

When a local file name is raised to the global namespace
by N processes, its representation is expanded to a list of
N global names with as many as N unique names, and we
need to compute this information in a scalable way. FGFS
uses a scalable algorithm to identify equivalence classes that
group the processes that see the same global name. The output
of the algorithm is a reduced list of unique names. At the
very least, each name in the reduced list should be associated
with the number of equivalent processes, the identifiers of the



equivalent processes, and the identifier of the representative
process. The ratio of the total process count to the cardinality
of the reduced list approximates the degree of distribution
or replication of the file. The equivalence class information
helps FGFS minimize the use of file I/O for its queries, such
as isConsistent. If only a single unique name is found,
the file is consistent by definition and no file I/O is needed.
Further, if the degree of distribution is higher than one but
still below a threshold, the representatives can perform I/O
to compute and compare the checksums of the file, deducing
global consistency.

A tree-based parallel reduce function can be used to imple-
ment a simple yet efficient equivalence class algorithm that
folds the initial list into a list of unique names. The reduce
function takes as input lists of key-value pairs where the URI
representation of a file name serves as the unique key. For the
implementation of the reduce function, we rely on existing
implementations such as collectives in MPI or Tree-Based
Overlay Networks (TBŌNs) like MRNet [19]. In the case
of MPI, all processes form a binomial tree using point-to-
point communication and the reduction operation is recursively
applied from the leaf processes to the root, one level at a
time. In the case of MRNet, the same reduce function is
implemented as a filter that is applied at every level in the
MRNet communication tree.

The computational complexity of the tree-based reduction
is logarithmic with respect to the process count when the
unique item count is small. However, it can pose scaling
issues when the item count is very high—the reduced list
can grow large enough that the algorithm performs similarly
to a concatenation. Since at larger scales both the impact
of the I/O issues and the chance of having a higher count
of unique items significantly increases, we use a multilevel
triaging scheme to put a scalability bound on the reduction
operation. As a first-level test, we apply a fixed-sized parallel
reduce function, a simple Boolean test across all processes,
which determines if a file is served by a local file system. If
local, the target file is fully-distributed and the equivalence
classification is not needed for other queries. If remote, a
Bloom filter-based cardinality estimation algorithm is applied
as the next refinement test. It represents an efficient triaging
that can determine if the target file is poorly-distributed or
well-distributed.

E. Bloom Filter-based Cardinality Estimation for Triaging

A Bloom filter is a bit array of m bits with k defined hash
functions. All bits in the array are initially set to the false bit.
A hash function hashes each element in a set into a position
in this bit array. Thus, the k-way hashing on all elements in
the set ends up setting some positions in the array to the true
bit. The resulting bit array then represents this set with the
required space bound to be m bits. This technique is commonly
used to test whether an element is a member of a set when
high efficiency and low space usage are required. However,
FGFS uses this technique to estimate the cardinality of the set
scalably with a space-bounced reduce function.

In our scheme, each process of a distributed program
allocates a bit array and applies hash functions to the URI
representation of a file name. After computing the hash value
and marking its result in the bit array, FGFS applies a parallel
reduce function across all Bloom filters with the bitwise OR
operator, effectively taking the union of all of the filters
and broadcasts the union to all processes. Each process then
computes the cardinality estimation on this reduced Bloom
filter. The estimation approximates the number of distinct
sources of the file, effectively determining if the file is well-
distributed or poorly-distributed.

Although memory efficient, a Bloom filter is a probabilistic
data structure. Thus, special care must be taken to ensure
sufficient accuracy of the resulting estimate and to impose
an error bound. For this we build on some of recent studies
in the fields of distributed databases and information systems,
in which Bloom filters are extensively used. In particular, we
calculate the maximum likelihood value for the number of
unique global names, given the state of the reduced Bloom
filter, as proposed in [20]: the maximum likelihood value =

ln(1− t
m )

k×ln(1− 1
m )

, where m is the number of bits, t is the number
of the true bits in the union, and k is the number of hash
functions.

The accuracy and scalability of this estimation technique
is also strongly influenced by the length of the Bloom filter,
the number of hash functions, and the number of unique
global names. Because a few well-designed hash functions
can significantly reduce hashing conflicts and thereby reduce
false positives rates, we use only two hash functions. Further,
we minimize the error rate by keeping the ratio of the number
of true bits to the length of the Bloom filter, also known as the
density of a Bloom filter, to be 50% with respect to the worst-
case scenario. This density is maintained when k ≈ m

n ln(2).
In this scheme, the worst case is not when the maximum

number of processes that can run on a machine each contribute
unique global names. The first triaging step has already ruled
out that possibility. Instead, the worst case at this stage rep-
resents the maximum number of remote file systems to that a
file path can resolve. This number is necessarily much smaller
than the maximum concurrency. Even if we build a billion-core
system with LLNL’s current Linux cluster approach, in which
we designate an NFS server per scalable unit (156 16-way
compute nodes), the Bloom filters union can only contain up
to 420K unique items (n). Given the required 50% density,
the worst case for billion-way concurrency then requires the
Bloom filter length to be 1.2 million bits or 150KB. Already,
modern high-end systems can efficiently perform a reduce
function over a buffer of that size. Additionally, with the
expectation of a much higher core counts per compute node
on future systems, we expect the actual worst case on real
future systems to be much smaller.

F. Global File Systems Status Queries
While file status queries are geared towards the needs of

read operations, its inverse function can generally benefit
write operations: FGFS’ file systems status queries. A file
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Fig. 5: Measured vs. modeled write performance

systems status query takes as an input a set of required global
properties of a file system such as its available aggregate
space, distribution, performance and scalability. The query
then searches through all of the file systems mounted on the
machine and selects the best matching locations.
GlobalFileSystemsStatus is the main data type that

captures this concept. A distributed program passes to an
object of this type the required global properties of a file
system in the form of a FileSystemCriteria object. The
status object then iterates over all mounted file systems and
collects the global information of each mount point as a file
path in order to test and to score how well the global properties
meet the specified criteria.

The only criterion that the program must specify is the
space requirement. As the status object iterates through the
mounted file systems, it calculates the aggregate number of
bytes needed by all equivalent processes and tests whether the
target file system has enough free space. In particular, when a
mount point resides across multiple remote file servers for the
target program, distinct groups of processes write into their
own associated file servers. Besides the space requirement,
FileSystemCriteria provides the following options to
allow a program to refine the requirement of a file system
further:
• SpeedRequirement: the sequential processing perfor-

mance of a file system with the choices of LOW and HIGH;
• DistributionRequirement: the distribution of a

file system with the choices of UNIQUE, LOW, HIGH,
and FULL;

• ScalabilityRequirement: the scalability of a file
system with the choices of SINGLE—i.e., a plain NFS,
and MULTI—i.e., a parallel file system.

If multiple file systems match the selected criteria,
FGFS orders them using a scoring function: Score(mp) =

Scalability(mp)
max(Scalability(mp),Distribution(mp)) × Speed(mp), where mp is a
file system represented as a mount point path, Scalability is
a function that returns the minimum process count that can
start to saturate the file system, Distribution is the number of
requesting processes, and Speed is the function that returns the

sequential processing performance of the file system. Higher
scores indicate better selections. The intuition is that a file
system would perform at its peak speed until the number
of processes that concurrently access it exceeds its inherent
scalability. Once exceeded, performance degrades at a linear
rate.

Figure 5 compares the measured performance of write op-
erations with the performance modeled by our score function
on three distinct types of file systems: local tmpfs, globally
mounted NFS and Lustre. It shows the score function closely
models the amount of bandwidth that each process gets as
increasing numbers of processes simultaneously write to those
file systems mounted on an LLNL Linux cluster. The measured
performance represents average per-process bandwidth that
our Interleaved or Random I/O Benchmark (IOR) [21] tests
report, as each IOR process synchronously writes 50-MiB file
10 times on each file system type.

While our performance model is reasonable when the file
system is not heavily loaded, we recognize that the current
loads of the file system can also significantly affect I/O
performance. Thus, we plan to explore mechanisms to increase
the accuracy of our score function as part of our future research
direction.

G. Interoperation with HPC Communication Fabrics

FGFS is designed as a general purpose layer, as shown in
Figure 3. Thus, it is critical for FGFS to interoperate well with
a wide range of HPC communication fabrics. For this purpose,
FGFS builds on a virtual network abstraction that defines
a rudimentary collective communication interface containing
only the basic operations: a simple broadcast, multicast, and
reductions. This layer can be implemented on top of many
native communication layers through plug-ins that translates
the native communication protocols to this rudimentary col-
lective calls. Thus far, we have developed and tested virtual
network plug-ins for MPI, MRNet and LaunchMON [22], but
this technique is equally applicable to other overlay networks
and bootstrappers such as PMGR Collective [23], COBO [23],
[22], and LIBI [24].

The virtual network abstraction allows an HPC program
written to a specific communication fabric to instantiate FGFS
on that fabric. Further, this approach does not restrict the
communication strategy for the global file I/O coordinator
layer to a single communication fabric. The coordinator must
be able to support various communication scenarios while
coordinating independent I/O patterns exhibited by sequential
elements. For example, a dynamic loader (e.g., ld.so) does
not have a communication network on its own and further
has to be executed before any fabric bootstrap phase. One
way to support this model is through an external service
that exploits system-level networks, e.g., provided by scalable
resource manager software.

V. EXPERIMENTS

In this section, we present our performance experiments
and three case studies that show our software system’s per-
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formance, scalability, and utility.

A. Performance Experiments on Three Applications

We run all of our experiments on two Linux clusters
installed at LLNL, named Zin and Merl. Each compute node
of these clusters has 2 sockets and 32 GB of RAM. Each
socket is populated with an 8-core 2.6 GHz Intel Xeon E5-
2670 processor, resulting in 16 cores per node. Zin consists of
2,916 compute nodes totaling 46,656 cores; Merl is a smaller
system with the same node type, consisting of 154 compute
nodes with a total of 2,464 cores. Nodes are connected by a
Qlogic Infiniband QDR interconnect.

We test all high-level FGFS file status queries shown in Sec-
tion IV-B on the executable and shared libraries of three LLNL
multi-physics applications, as they are currently configured
and staged on our production systems. The test applications
include KULL, with 848 dependent shared libraries. Two other
applications are smaller in their aggregate binary sizes and
depend on fewer numbers (19 and 31) of generally smaller
shared libraries.

The first observation of the experimental results is that
AsyncGlobalFileStatus queries generally perform bet-
ter than SyncGlobalFileStatus queries in particular
when the number of shared libraries to test for an applica-
tion is substantially high. However, this performance char-
acteristic is reversed with a low count of shared libraries.
This is caused by the SyncGlobalFileStatus query
having to run the classification algorithm on-demand for
each file whereas AsyncGlobalFileStatus must run
the same algorithm on all of the mount point root paths
during its initialization. Thus, once the query count becomes
higher than the mount point count, the initialization cost of
AsyncGlobalFileStatus is starting to pay off.

We now detail our results on the KULL application as this
application represents the worst case of our three test codes.
We use a simple performance benchmark that calls each FGFS
file status query on the KULL executable and its many shared
library dependencies, and reports the global property statistics
at the end. We report timings for the core FGFS section of
this benchmark that includes the FGFS initialization API call
and a main loop that performs the query on entire target files.

Figure 6 shows the performance of all of the high-level
file status queries of FGFS instantiated with the MPI plug-in.
We use the default MPI installed on the system, MVAPICH
version 1.2. In all but the isConsistent case, the FGFS
file status queries 849 files (1 executable and 848 shared
libraries) are executed in a fraction of a second on up to 32,678
MPI processes. More specifically, at 32K processes it takes
AsyncGlobalFileStatus 30, 37, 29 and 28 milliseconds
to perform isUnique, isPoorly, isWell, and isFully
file status queries respectively on all files. The synchronous
case is about an order of magnitude slower with 272, 120,
139, 158 milliseconds, respectively. More importantly than
those absolute numbers, though, Figure 6a and Figure 6b show
that most asynchronous and synchronous FGFS queries exhibit
strong scaling trends, either logarithmic or linear with a flat
slope. The average R2 value of a logarithmic fit across 8 cases
(all but isConsistent) is .903.

In the case of the isConsistent query shown in Fig-
ure 6c, our further analysis shows that the linear scaling is
in part due to the poor scaling of MPI_Comm_split in
the underlying MPI implementation. FGFS splits the MPI
communicator when distinct equivalence groups are identified,
and a query requires representative processes to compute MD5
checksum by reading the file and to broadcast the checksum to
the processes in their group to deduce global consistency. Our
measurements show that the cost of MPI_Comm_split alone
already accounts for over 50% of total overhead at moderate
scales with a few thousands of processes and we suspect
that the comm-split overhead would dominate the overall
performance to a larger extent at higher scales. However, more
scalable solutions that exhibit logarithmic scaling behavior
exist [25], but have yet to be included into standard MPI
distributions. Until this is the case, we plan on integrating
them directly into FGFS as a short-term solution.

Figure 7 shows the performance results with FGFS instan-
tiated with a beta MRNet version 3. While its overhead is
higher than that of FGFS on MPI, the scaling trends are
generally similar—the average R2 value of a logarithmic fit
is .966. FGFS on MRNet incurs higher overhead due to larger
communication costs going through MRNet, as it uses TCP/IP.
That use allows MRNet to provide a general-purpose, portable
overlay network for distributed run-time tools that can run on
machines with different architectures and operating systems.

Finally, our measurements show that FGFS scales similarly
on the other two multi-physics applications. However, the
absolute performance is better as the numbers and sizes of
shared libraries to query are substantially smaller. FGFS still
proves to be effective on these applications compared to a
traditional approach. For example, already at 512 processes,
isConsistent is measured to be a factor of 9,016 (0.002
vs. 18.032 seconds) better on the first application and a factor
of 27,735 (0.002 vs. 55.470 seconds) better on the second
application than the traditional checksum scheme.
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Fig. 9: Attach + sample time for STAT with file broadcasting

B. Case Study on STAT

The Stack Trace Analysis Tool (STAT) [7] is a highly scal-
able, lightweight debugging tool. STAT gathers stack traces
from all processes of a parallel application and merges them
into a call-prefix tree, which groups similar processes into
equivalence classes. This equivalence means that a single
process within a class can serve as a representative of the entire
set. Thus, the user can effectively reduce the process search
space from the entire application to a single representative
process of each equivalence class.

STAT uses MRNet for scalable communication via a

tree-based overlay network and the StackWalkerAPI from
DynInst [26] for lightweight stack sampling. Our previous
work [27] identified and addressed several scalability bottle-
necks and demonstrated scaling over 200,000 processes. One
of the bottlenecks identified was in fact STAT’s file system
access and a prototype Scalable Binary Relocation Service
(SBRS) feature was developed to address this issue. With
FGFS, we were able to overcome the shortcomings of SBRS.
For one, SBRS requires broadcasting all of the shared libraries
that are linked into the target executable, while FGFS allows
us to broadcast only the shared libraries required to resolve the
functions in the current execution stack. Furthermore, FGFS
adds the ability to handle dynamically loaded libraries, while
SBRS could not since it relied on static properties of the
executable.

STAT was modified to use AsyncGlobalFileStatus
and file multicasting. In particular, before accessing a file,
each STAT daemon queries FGFS to determine the location
of the file. If the file is well distributed, then the daemon
directly accesses it through the file system. If it is not well
distributed, the daemon sends a request for the file contents to
the STAT frontend. The frontend reads the file contents from
the file system and sends the contents through the MRNet
tree. Additional logic is implemented in the MRNet filter code
running in the tree communication processes to ensure that file
contents is only sent down paths to daemons that requested the
contents. Additionally, the communication processes cache file
contents to handle asynchronous requests without performing
redundant file reads and sends.

To evaluate the effectiveness of STAT using FGFS and file
broadcasting, we ran it on the KULL application on Zin and
compared the results to STAT without any alternative I/O
scheme. Since a StackWalkerAPI object first accesses the file
during attach, but does not read its contents until sampling
the stack traces, we measure both the attach time as well as
the initial sample time to provide a fair comparison. With the
file broadcast version, the file contents is broadcasted during
attach, while in the version in which daemons directly access
the file system, the file system bottleneck is hit during the
actual reads caused by the stack sampling operation.

The build of KULL on which we tested FGFS had all of
its packages compiled into the base executable which totaled



1.7GB, rather than a build that links in the packages as shared
libraries. StackWalkerAPI uses lazy parsing and thus only
needs to access shared libraries that define the functions in
the current execution stack. In practice, a hung application will
only span a handful of shared libraries, thus our experimental
setup with the large base executable represents a worst-case
scenario where the STAT daemons need to read in a large
quantity of file contents. In all of our tests, we let KULL
hang in an interactive prompt to ensure that the application is
in a consistent state across test runs. Furthermore, each test is
run in a new allocation to ensure that file system caching is
not a factor.

Figure 8 shows a comparison of the combined attach
and sample time with and without file broadcasting. In the
case where we did not use file broadcasting, the time was
dominated by the sampling operation. The attach scaled from
one quarter of a second up to a second, while the sampling
time scales linearly with the size of the system, taking nearly
1 hour at 16K MPI processes. We omitted a test at 32K
without file broadcasting since this essentially causes a denial-
of-service attack on the file system. By comparison, with our
file broadcasting scheme, the attach and sample time was 67.87
seconds at 16K MPI processes and 72.43 seconds at 32K MPI
processes. The timing breakdown for the file broadcast case
can be seen in Figure 9, which shows that the sample time
was consistently around 11 seconds, regardless of scale. An
analysis of the attach time, which is dominated by the actual
broadcasting of the file contents, shows logarithmic scaling
with an R2 value of .958.

C. Case Study on SPINDLE

The Scalable Parallel Input Network for Dynamic Loading
Environment (SPINDLE) takes the role of the global coordina-
tor layer as shown in Figure 3. SPINDLE aims at eliminating
the harmful effects of uncoordinated I/O storms, which can
lead to unacceptable application start-up overhead and further
denial-of-service attacks as described in Section II-A. It con-
sists of a set of load servers that form a forest-based overlay
network with support for an arbitrary number of trees in the
forest. Only the load servers at the roots of these trees are
designated to perform direct file system operations including
metadata operations and to broadcast the results back to other
servers. The servers then serve the cached results to any
sequential processing element including the dynamic loader,
which is extended with the SPINDLE client.

We integrated SPINDLE with FGFS on top of Launch-
MON and its communication fabric. Upon receiving a file
access request from a SPINDLE client, the servers use
AsyncGlobalFileStatus to choose between a direct file
system access and file broadcasting. More specifically, if the
file is globally unique, only designated servers at the roots of
the trees access the file system and broadcast the result to all
others via the trees. If it is well distributed, the request is then
passed through to the file system. Instead, if the file is poorly
distributed, the FgfsParDesc parallel descriptor is used to

determine representative load servers that then each access the
file system and broadcast the result to other equivalent servers.

Our performance evaluation on LLNL’s Sierra Linux cluster
indicate that FGFS ensure the alternative scalable I/O scheme
of SPINDLE regardless of where the requested file resides. We
ran and scaled under SPINDLE the Pynamic [28] benchmark
that is designed to stress the underlying dynamic loading
system. Our results show that FGFS allowed SPINDLE to
improve the benchmark performance by a factor of 3.5 over
the traditional approach at 768 MPI processes without make
predetermined assumptions about where Pynamic’s 495 shared
libraries should be staged. This scale represents the limits at
which Pynamic could run under the traditional scheme without
significantly affecting other jobs. With SPINDLE/FGFS, this
benchmark was shown to continue to scale well up to 15,360
MPI processes with no disruption to shared resources.

D. Case Study on SCR

The Scalable Checkpoint/Restart (SCR) library [8] is a
multilevel checkpoint system developed at LLNL. In addi-
tion to saving checkpoints on the parallel file system for
long-term persistence, SCR is designed to save checkpoints
to temporary scratch storage located closer to the compute
nodes, such as storage installed on each compute node or
perhaps burst buffers [29] installed elsewhere in the system.
This temporary scratch storage is not reliable, and thus SCR
applies redundancy schemes to the data it stores there. The
availability, capacity, and mount point location of such storage
vary across HPC platforms, and currently a configuration file
must be created to specify these details. Someone with an
understanding of certain low-level implementation details of
SCR must create this configuration file, and in practice, this
requirement significantly limits SCR’s portability.

Using FGFS, we modified SCR to discover the state of the
system dynamically, so that all of this manual configuration
is eliminated and replaced by a few API calls. In particular,
before an application writes a checkpoint, it specifies an upper
bound on the number of bytes that each process will save. Us-
ing this information, SCR fills in a FileSystemCriteria
object and calls upon GlobalFileSystemsStatus to dis-
cover the fastest available storage location capable of storing
the checkpoint. SCR uses the reported speed of the storage
location to determine the optimal checkpoint frequency, and
by calling SyncGlobalFileStatus and FgfsParDesc
with the corresponding path, we obtain the process groups
that share the same physical storage. SCR uses this global
information to construct more efficient redundancy schemes.
These enhancements ensure that SCR delivers the optimal per-
formance without having to rely on arduous manual configura-
tion efforts, representing significant improvements for effective
performance portability across diverse HPC platforms.

VI. RELATED WORK

Our work focuses on supporting efficient file I/O strategies
for HPC beyond the common access patterns of applications
on large-scale data sets. Much research exists that addresses



parallel I/O on large-scale data sets. I/O researchers strive to
have the greatest impact to the common access patterns by
aiming to improve a layer in the parallel I/O software stack
that consists of storage technologies, parallel file systems, I/O
forwarding, parallel I/O middleware, and parallel high-level
I/O libraries.

FGFS sits above the file systems layer and thus is agnostic
to storage technologies. In Section III, we discussed how
our work is distinguished from and related to parallel file
systems and other hybrid approaches. As previously noted,
FGFS complements the file systems layer by characterizing
mounted file systems to support HPC software in making
intelligent I/O decisions.

The I/O forwarding layer enables scientific applications
running on the compute nodes to forward its I/O transparently
to dedicated resources like I/O nodes. This approach allows
intermediate forwarding agents to use aggressive I/O opti-
mization techniques such as caching and aggregating without
introducing noise to the compute nodes. IBM CIOD [30]
and Cray Data Virtualization Service (DVS) [17] are the
commercial implementations on the IBM Blue Gene family
and the Cray XT/XE family, respectively. ZOID [31] is an
non-proprietary solution for Blue Gene. Recently, open-source
projects such as IOFSL [32], and DIOD [33] have begun to
emerge with the goal of providing the benefit of I/O forwarding
techniques to a wider range of systems. The aim of these
techniques is to transparently reduce the load to any target
file system under its control. Thus, it does not expose the
characteristics of the file system to a program for use in its
I/O strategy. An I/O forwarding topology is typically static
and optimized for the common access patterns on large-scale
data sets. Researchers have shown that the access pattern
of dynamic loaders can be improved by staging all shared
libraries in a dedicated server with a dedicated I/O forwarding
topology on top of it [34]. In contrast, the goal of FGFS is
to support I/O strategies so a program does not experience a
bottleneck, regardless of where the file exists.

I/O middleware such as MPI-IO [3] facilitates concurrent
access by groups of processes while matching its abstractions
with a target programming model. For example, MPI-IO
models parallel file I/O as message passing—i.e., a read as a
receive and a write as a send—and provides abstractions that
describe the partitioning of file data and perform collective
I/O among MPI processes. Here, the goal is to help a parallel
program written in a particular programming model to realize
efficient and portable file I/O beyond UNIX file I/O. A
myriad of research exists that design and evaluate efficient and
scalable I/O strategies to support middleware concepts such as
the description of the file data and collective I/O [35], [36],
[37], [38]. Again, FGFS is complementary to this approach
by being able to give a hint to the I/O middleware if a
file would be better off with collective or serial I/O. High-
level I/O libraries such as HDF5 [4], Parallel netCDF [5] and
ADIOS [6] map scientific application abstractions onto storage
abstractions and provide data portability. They are best suited
for large-scale data sets on parallel file systems.

Finally, our work is related to collective OS research [39].
This research shares the common goal of providing the OS
with parallel awareness and further collective services. Our
global file I/O coordinator concept can be viewed as part of
this domain. In identifying OS issues for petascale systems [9],
researchers argued for the need on much research and devel-
opment that prevent I/O nodes and their paired compute nodes
from creating what will essentially be denial-of-service attacks
on file systems. Specifically, they demanded new caching
strategies, collective I/O calls, and automatic I/O reductions
and broadcasts through the I/O nodes for petascale machines to
achieve scalability. FGFS can provide an OS service with the
global information of a file through the mounted file systems
so that the service can determine its coordination strategy
effectively.

VII. CONCLUSION

Efficient use of storage is essential for HPC software. To
realize the full potential of a system, the software must use
efficient mechanisms in accessing every level in the storage
hierarchy. In particular, with a growing trend towards very
large numbers of compute cores, using an access scheme
that avoids contention at lower levels is becoming increas-
ingly important. However, devising efficient alternative file
I/O schemes are becoming a greater challenge at the file
system level. Today’s systems mount many file systems with
distinct performance characteristics and a file can reside in
any of these file systems. However, this structure is hidden
from the user. Thus, highly concurrent access to the file with
no detailed knowledge on its global properties often incurs
unacceptable performance overhead and further disrupts the
entire computing facility. Worse, the existing parallel I/O
software stack does not provide rich enough abstractions and
mechanisms to support alternative I/O schemes often needed to
eliminate serious I/O scaling issues beyond I/O on large-scale
data sets.

We have developed Fast Global File Status as a means
to retrieve the global information on a file or file systems,
filling that gap. The goal of FGFS is to provide a reusable,
general-purpose layer that exposes the information relevant to
the distribution to a file. It is designed to support alternative
I/O schemes beyond direct I/O for a wide range of HPC
software. Our performance evaluation shows that FGFS rep-
resents orders of magnitude improvements over the traditional
approaches. Further, our case studies on STAT, SPINDLE,
and SCR suggest that fast mechanisms to retrieve the global
information on files and file systems are widely needed and
greatly help a wide range of HPC software improve their file
I/O patterns and overall scalability in a portable fashion.

Our results show that our proposed system is already
efficient, scalable, and has utility, as a stand-alone software
module. But we envision that FGFS will be deeply integrated
into various HPC software stacks, further extending its benefits
to many essential HPC elements. They include our global
file I/O strategy assistant suite, next generation resource man-
agement software, and parallel-aware operating systems. Our



work on integrating FGFS with SPINDLE and SCR is in fact
our first step towards this vision.
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